Research Projects

Research Projects

Research Projects

Project start: 01.07.2020
Project end: 30.06.2025
Sponsor: Hessian Ministry of the Environment, Climate Protection, Agriculture and Consumer Protection

The aim of the VitiVoltaic4Future project is to conduct research for viticulture in a newly created real laboratory for the use of agrophotovoltaics (APV). The infrastructure is to serve as an innovation platform beyond the project period; it is to enable research, development and knowledge transfer, as well as to encourage social participation in shaping the energy transition using practical examples. An overarching goal is to make land use more sustainable for special crops (here using viticulture as an example), to open up new ways of adapting the cultivation of special crops to climate change, and at the same time to develop renewable, decentralized power generation plus agricultural production in the field to application maturity iteratively with the stakeholders concerned as part of the energy transition. The concrete goal of VitiVoltaic4Future is to quantify the effects and possibilities of viticulture under Germany's first agro-PV system, to provide data for knowledge transfer, and to scientifically accompany adaptation strategy possibilities that could arise from such solar islands through viticultural research and know-how building. Within the project, measures for biodiversity promotion in viticulture (--> project "AMBITO) will be integrated. In particular, we aim to link "solar islands" with biodiversity islands in viticultural cultural landscapes, in order to holistically promote the sustainability of viticulture.

Project start: 01.05.2021
Project end: 30.04.2024
Sponsor: Federal Ministry of Education and Research

The ErdHase collaborative project ensures a better quality of life and safety for peanut and hazelnut allergy patients. It combines clinical, analytical and food production know-how. The aim of this project is to provide analytical tools for the management of food allergens along the food production value chain. Those analytical methods will be linked to the immune repertoire of a patient cohort for food allergen detection.

Hochschule Geisenheim
© Verbundprojekt ErdHase

Project start: 15.04.2021
Project end: 14.04.2024
Sponsor: Federal Office for Agriculture and Food

The invasive spotted wing drosophila, Drosophila suzukii, has become a main pest in stone fruit and protected berry fruit production. So far, no effective methods for biocontrol of this pest exist. On the basis of native pupal parasitoids, an innovative strategy for sustainable and biological regulation as an alternative to chemical control options will be developed. This requires the following work packages: (1) An efficient and quality-assuring mass rearing process for production of the pupal parasitoids in sufficient quantities needs to be developed. (2) The best developmental stage of the beneficial insects for release will be characterized. A formulation for their application and quality-maintaining release carriers will be developed. (3) Necessary application schedules will be elaborated. The application will be optimized by means of a model on the basis of biological data and under consideration of abiotic factors such as cultivation practices and weather conditions. (4) The effectiveness of the releases will first be tested in practical trials and, after optimization, on farms. For this purpose, it is also necessary to test the integration of the releases into the overall crop management procedures, in particular with regard to a combination with common plant protection products. Overall, the project will provide a new biocontrol management strategy based on the use of specific antagonists for regulation of spotted wing drosophila in protected berry cultivation.

Hochschule Geisenheim
© Institut für Phytomedizin - Mirjam Hauck

Project start: 01.04.2019
Project end: 30.03.2024
Sponsor: Geisenheim University

The aim of the project is to analyze bird diversity in German wine-growing regions and to demonstrate the influence of landscape structures and management systems using the example of Rheingau, Rheinhessen und Mosel. The findings shall help to develop a management system that promotes biodiversity. So far, research has shown that pure wine-growing regions provide a suitable habitat for only a few species. Viticulture is characterized by intensive management systems with frequent disturbing factors such as the use of pesticides, soil preparation and mowing. Greened alleys of land that support very few species only, and the elimination of marginal strips as part of large-scale reparceling processes resulted in low structural diversity. However, certain landscape structures in and around the vineyard as well as an adapted management system can create favorable living conditions and contribute to stall the loss of biodiversity in the agricultural landscape.

Hochschule Geisenheim
© Katharina Adler

Project start: 01.01.2021
Project end: 31.12.2023
Sponsor: German Research Foundation

Project start: 01.02.2019
Project end: 31.12.2023
Sponsor: European Commission, Hessian Ministry of the Environment, Climate Protection, Agriculture and Consumer Protection

The main aim of this very applied project is to increase the proportion of regionally produced apples for cider production in the state of Hessia. The regional fruit juice companies are supporting new plantations, especially meadow orchards, and their management with a divers range of measures. However, the delivery of apples for juice prodcution is decreasing constantly. This is in contrast to the consumers wish for more regional products. Currently, only 20% of the total demand by the companies comes from regional meadow orchards. In order to increase this, commercial apple production for fruit juice and cider shall be introduced in Hessia. For this, the project should define the requirements for a commercially successful production of high quality apples for fruit juice production. A map to identify possible production areas in Hessia is to be produced. Aspects of biodiversity and landscape development are to be included. By this new growers should have a good basis for a decision towards developing new plantations. In addition, commercial plantations shall be evaluated against tradtional meadow orchards.

Project start: 01.11.2020
Project end: 31.10.2023
Sponsor: German Research Foundation

Hochschule Geisenheim
© Dr. Dominik Schmidt

Project start: 01.09.2020
Project end: 31.08.2023
Sponsor: Development agency for agribusiness

“Witality – Wine in Virtual Reality” is a collaborative research project between the scientific community and industry experts. Participating institutions are Hochschule Geisenheim University, Department of Enology, University of Applied Science Bonn-Rhein-Sieg, Institute of Visual Computing, Pieroth Wein AG and DLG Test Service GmbH. The three year reserach project is funded by the Develpment Agency for Agribuiness. The partners are focusing on practice-oriented research on the use of virtual reality (VR) for sensory analysis of wine. The University of Applied Science Bonn-Rhein-Sieg will develop a special VR software to simulate typical locations for wine tastings, such as bars and wine shops. With smart glasses, consumers can immerse in these virtual realities. At the beginning of the project, Hochschule Geisenheim University will determine how olfactory and acoustic stimuli in VR affect the sensory evaluation of wine. To that end, the simulated situations are analyzed in comparison to an evaluation in a standardised evironment like sensory laboratories. In a next step, researchers will examine how the sensory evaluation of samples changes when they are consumed under different conditions (e.g. standard sensory laboratory, wine shop vs wine shop simulated in virtual reality). Pieroth Wein AG and DLG Testservice GmbH will test the usability of the smart glasses and software, too. The aim of the project is to provide a tool that can be used by various stakeholders in the wine industry for many different reserach questions and thus helps to open up new market segments and consumer groups.

Project start: 16.03.2020
Project end: 15.05.2023
Sponsor: Federal Office for Agriculture and Food

The project "Apple4.NULL" aims to improve the sustainability of German apple production through automation and digital technologies. To this end, a network of non-destructive sensors will be set up to use data for targeted model-based control of various processes in apple production and storage. In addition to seasonal weather conditions, the most important factors influencing fruit quality and storage life, during the pre- and post-harvest periods, can be monitored with sensors. Control mechanisms and modelling related to water usage and fruit stress will be developed and the management of the orchard and storage adapted accordingly. In the "Apple4.NULL" orchard, the sprayer will be equipped with a digital assistant to optimise plant protection product usage, to reduce spray drift and access weather data and GIS information with the legal spray boundary requirements. The sprayer will use LiDAR sensor technology to assess the tree canopies. Existing sensors controlling CA storage rooms will be enhanced with intelligent defrosting algorithms for the refrigeration system. In storage changes in fruit quality will be continuously monitored and storage systems controlled via an intuitive software interface that will also enable other partners in the fruit value chain to access information. New technologies developed in the project will be directly implemented in commercial fruit growing practice via a number of industry project partners. Our focus will be on the integration of irrigation management in the decision support system.

Project start: 01.11.2019
Project end: 30.04.2023
Sponsor: Hessen State Ministry of Higher Education, Research and the Arts, European Commission

The project involves the acquisition of knowledge-based results on sustainable economic and ecological success of wineries as well as innovatively conveying these results to various groups of interest within the wine industry, such as instructors and universities, associations, consultants and politicians, through an online platform. Based on the unique database of the Geisenheim business analysis, the profitability examination and evaluation are to be fundamentally updated and enhanced, in order to adapt to current industry conditions along with scientific and technological progress. In this context, benchmarks of economic success will be presented for different types of ecological sustainability. The project combines analysing profitability and ecological sustainability of wineries in the form of benchmarks and annotated graphic reports. An innovative economic-index, based on anonymous sales data provided by ERP software, is being developed. An interactive data portal allows various groups of interest user-friendly access to the results. Goals This project pursues three core objectives for the wine industry: 1) Economic sustainability: New knowledge-based graphical and annotated evaluations as a benchmark for wineries in addition to an up-to-date economic-index are being developed. 2) Ecological sustainability: How can ecologically sustainable wineries be more economically successful? To answer this question, indicators of ecological and economical sustainability are combined. 3) The results will be made available to businesses and the industry in general over an online portal.

Project start: 01.04.2020
Project end: 31.03.2023
Sponsor: Hessian Ministry of the Environment, Climate Protection, Agriculture and Consumer Protection

The aim of the joint project "AKHWA" is to contribute to measure L 19 of the Integrated Climate Protection Plan Hesse 2025. The joint project is concerned with research into the implementation of cultivation measures from the "toolbox" of regenerative agriculture (ReLaWi) on soil fertility and ecosystem services, especially with regard to soil water retention, which is becoming increasingly important against the backdrop of advancing climate change and the recent heatwave summers.

Project start: 07.02.2020
Project end: 31.03.2023
Sponsor: Federal Office for Agriculture and Food

Consumer’s demand for ornamentals and the resulting sales and revenue generated by trading associations and direct sales companies strongly depend on external factors such as weather, public holidays and vacations, which poses a problem for many value chains in horticulture. For many companies it is difficult to assess the effects of these factors, resulting in significant uncertainties when it comes to scheduling and ordering products that often have a limited lifespan. Within the scope of the project, the value chains of ornamentals and cut flowers serve as an example to investigate the possibilities of small and medium-sized retail companies in horticulture to use and process internal and external data.

Project start: 01.03.2020
Project end: 28.02.2023
Sponsor: , Geisenheim University

Future viticulture needs to minimise the impacts of agrochemicals on human health and on environment by favouring biological control. Entomopathogenic fungi could be used in an integrated pest and disease control program as they are selective, will not cause emergance of resistance in pest populations and persist in the medium after their application. However, abiotic factors such as temperature, humidity and sunlight affect the efficacy and persistence of entomopathogenic fungi. A deeper understanding of the ecology of these fungi is thus necessary to ensure optimal conditions of their potential use for biological control. The GRAPHYTI project aims to explore the endophytic potential of the entomopathogenic fungi Metarhizum roberstii on grapevine. We will test if M. robertsii strains could be associated to grapevine roots without harming plant growth while having a pathogenic effect on arthropod pests (more particularly the root-feeding phylloxera and grapevine-moths). This project will build upon a native entompathogenic fungi collection performed from four wine-growing environments (fungi naturally occurring in vineyard soils) with contrasting climatic conditions (temperature and humidity): Germany, southern France, southern Australia and western Argentina. A collection of M. robertsii strains will be molecularly identified and characterised under different temperatures, humidity conditions, CO2 concentrations and for their pathogenic effect on pests. We hope to be able to provide native entomopathogenic fungi strains that could be used to protect grapevine against pests in a sustainable way: being adapted to local climatic conditions and to future global warming.

Hochschule Geisenheim
© Hochschule Geisenheim

Project start: 28.02.2020
Project end: 27.02.2023
Sponsor: Federal Ministry of Food and Agriculture

Project start: 01.01.2021
Project end: 31.12.2022
Sponsor: ,

The unique terrace-shaped landscape along the Upper Middle Rhine Valley, characterized by vineyards and orchards, is experiencing a profound transformation due to changes in land use and ecological succession. Against this background, the projects assesses objectives and opportunities for society associated with the development of a mosaic-like and diverse steep slope landscape, determines obstacles and conducive conditions, and starts to reactivate areas for a sustainable use. Existing large-scale objectives and recommendations are broken down to a local level with the aim to provide a vision for a sustainable development of the landscape that takes into account ecological, economic and social objectives and is backed by local communities. At the same time, a follow-up project for large-scale implementation is currently being set up.

Hochschule Geisenheim
© Prof. Dr. Eckhard Jedicke

Project start: 01.01.2020
Project end: 31.12.2022
Sponsor: German Academic Exchange Service

After a successful partnership of Geisenheim University (HGU) with the University of Thessaly in Greece (ZuGAbe-Project), HGU would now like to establish a partnership with the University of West Attica (UNIWA) and particularly with the Department of Wine, Vine and Beverage Sciences. The cooperation between the two Universities is called Future Challenges in Viticulture, Enology and Wine Business (WOW-project) and is funded by DAAD. The main objective of the project, namely a long-term partnership between the two institutions, will be achieved through common events, such as workshops, conferences, summer schools etc., but also through an exchange program for students and scientists of both universities.

Project start: 01.01.2020
Project end: 30.06.2022
Sponsor: Forschungskreis der Ernährungsindustrie e.V.

Hochschule Geisenheim
© Prof. Dr. Frank Will

Project start: 01.12.2017
Project end: 31.05.2022
Sponsor: European Commission

This project aims to train the next generation of researchers to provide knowledge and expertise for two major industries in the EU, namely the beer and wine industries. Yeasts belonging to the Saccharomyces stricto sensu group are the workhorses of these industries and an understanding of how yeasts contribute to the complex flavours and aromas of beer and wine is essential for the improvement of existing fermentation technology and for the development new flavoursome beverages. The research objectives of the consortium is to examine the biochemistry and genetics of the production of flavour compounds in yeasts used in wine and beer fermentations, to generate new strains of yeasts with improved or more varied flavour profiles and to develop novel approaches to expanding flavour profiles through co-fermentation of different yeasts. The network will provide a comprehensive education in yeast genetics, synthetic biology, flavour chemistry and fermentation technology for Early Stage Researchers through individual mentored research training in both academic and industrial institutions, through inter- and intra-sectoral exchanges and secondments and through academic workshops. The involvement of industry leaders in the consortium ensures that ESRs will be exposed to real challenges facing fermentation industries and through training in Innovation and Entrepreneurship, ESRs will develop the skills to provide solutions to these challenges. Scientific discourse and communication will be a cornerstone in the training network. ESRs will be encouraged to communicate their ideas with scientific peers and with the public at large to promote an understanding of the role scientific endeavor in the economic development of two of our most important EU industries. The research developed in this project will provide scientific innovation and new and exciting opportunities for the major fermentation industries and for emerging craft beer brewing SMEs.

Project start: 01.05.2019
Project end: 30.04.2022
Sponsor: Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit

The project’s aim is to set up a local and inter-municipal cooperation and to turn it into concerted efforts to adapt to climate change in viticulture using the example of the Rheingau. Within the network, effective and sustainable concepts for climate adaptation in viticulture are being developed and tailored to specific user groups. With regard to the model character of the project, the resulting approaches can be adapted to other agricultural systems such as areas used for fruit and vegetable growing.

Hochschule Geisenheim
© Wuppertal Institut, Projekt KliA-Net

Project start: 01.02.2019
Project end: 31.01.2022
Sponsor: Hessen State Ministry of Higher Education, Research and the Arts

Project start: 01.07.2017
Project end: 31.01.2022
Sponsor: Geisenheim University

Large-scale infrastructure projects cause a significant transformation to the landscape, which is often characterized by conflicts, delays and budget overruns. The aim of the MOVE project is to find ways how to take into account the complexity of these tasks during the planning process. To that end, a problem-solving cycle is to be completed, which systemically analyzes the planning and the planning object in its environment (street and landscape). An exploration shall examine how the success of this transformation can be measured given the high number of stakeholders. A modeling approach to analyze the planning processes and its impact on the road and landscape system will provide indications of potential weaknesses. Subsequently, sub-systems identified as particularly relevant will be simulated using Vester's sensitivity model. The lessons learned will be used as suggestions to help optimize the success of the transformation.

Hochschule Geisenheim
© Prof. Dr. Eckhard Jedicke

Project start: 01.01.2021
Project end: 31.12.2021
Sponsor: Ministerium für Wirtschaft, Verkehr, Landwirtschaft und Weinbau Rheinland-Pfalz

The German wine sector is constantly changing. Shifts in this competitive environment have been pushing wineries to become more professional, prioritize wine-growing and marketing as well as increase their size due to economic pressure. These structural changes have required wineries to continuously adapt and evolve in order to be economically successful. Since 1994, the overarching objective of the research project “Profitability Analysis in Viticulture” has been to constantly provide important and relevant information required for the successful management of wine companies. By analysing and processing aggregated operational data, the companies are offered a supportive tool for making well-informed, entrepreneurial decisions. Additionally, the project provides economic policymakers with insights into the economic developments, income situation and current structure of the wine sector.

Project start: 05.04.2019
Project end: 30.11.2021
Sponsor: Central Innovation Programme for SMEs

The ZIM cooperation project with Prodana GmbH involves the development of a new batch reactor by the start-up company for the carbonization of a farmer's own woody residues or wood chips. The task of the partner HGU is the development and evaluation of plant carbon-based organic fertilizers under examination of their environmental effects and environmental and yield effectiveness. At HGU, tests are therefore carried out with biochar from the novel retort, in which either a more extensive screening of various carbon fertilizer combinations for their nitrate retention capacity and possible N2O emission reduction is carried out in the greenhouse. In addition, selected carbon fertilizer combinations for a possible yield increases and improvement of the environmental balance are tested in the field under natural weather conditions using pseudo-lysimeters. The results of the project partner HGU will be used to improve the batch process of biochar production accordingly and to develop a field data basis that can be made available to potential interested parties and users.

Project start: 01.11.2018
Project end: 31.10.2021
Sponsor: Federal Ministry of Food and Agriculture

The project mikroPraep represents a joint network of two research institutes, a biotechnological company and an associated university partner. The overall goal is the development of a marketable plant protection agent based on a strain of the bacterium Lysobacter enzymogenes. Ideally, the product provides broad action against several fungal and bacterial diseases on diverse crop plants. In a first step, antifungal and antibacterial activity will be investigated in the lab as well as in greenhouse trials. Here, efficacy of living bacterial cells and cell- free fermenter cultures will be tested individually. In that way it can be determined to which extent fungicidal and antibacterial effects are based on whole living cells or on bacterial metabolites. Additionally a detailed characterisation of the bacterial metabolites will be carried out, an important step regarding high product efficacy and safety. In subsequent steps different formulations will be produced and tested regarding aspects such as storage stability, applicability and biological activity. These parts of the project will be mainly investigated in field trials on different crops.

Hochschule Geisenheim
© Hochschule Geisenheim

Project start: 15.08.2018
Project end: 14.10.2021
Sponsor: Federal Ministry of Food and Agriculture

Will mating disruption be an effective method to control the European grapevine moth (Lobesia botrana) in the future or will it be hindered by elevated atmospheric carbon dioxide (CO2) concentrations? L. botrana, the major pest insect in vineyards, is currently well-controlled in Germany, resulting in a massive decrease of applied insecticides. Yet, it is unclear if this success will persist in a changing climate. Male European grapevine moths find females in the vineyard by following the trace of sex pheromones they emit. In order to prevent successful location of females, artificial pheromones are dispensed all over the vineyard, concealing the real traces (mating disruption method) and hence reducing the number of mating events. Elevated CO2 concentrations can affect insect physiology. We therefore study if (1) the composition of female sex pheromones and/or (2) the perception of these pheromones by males as well as their behavior changes under future CO2 concentrations. “KlimaKom” is a joint research project of the Applied Chemical Ecology lab at the Julius Kühn Institute and the Department of Crop Protection at the HGU, funded by the German Federal Ministry of Food and Agriculture. Using the vineyard Free Air Carbon dioxide Enrichment (FACE) facility in Geisenheim as well as the wind tunnels and gas chromatography-electroantennography equipment in Dossenheim, we are combining field and laboratory experiments. Additionally, we are studying the impact of elevated atmospheric ozone concentrations.

Hochschule Geisenheim
© Hochschule Geisenheim

Project start: 01.10.2018
Project end: 30.09.2021
Sponsor: Federal Office for Agriculture and Food

The SUSCHOICE project has three main objectives: (a) to identify the effects of different factors (macro, structural and individual) influencing consumers' sustainable food choices and; (b) to evaluate the possible strategies for promoting sustainable food consumption based on the different macro and structural conditions and individual life contexts; and (c) to test marketing strategies for promoting sustainable food consumption among young adults across different European countries..

Project start: 01.05.2017
Project end: 30.04.2021
Sponsor: Hessen State Ministry of Higher Education, Research and the Arts

Strengthening the research in the HGU's profile topics requires the establishment of Bioinformatics / Applied Statistics (BiaS) at the HGU. The BiaS research area is a cross-sectional science addressing the collection, analysis and storage of data as a key discipline across all subject areas. Its goal is to develop methods and tools to translate vast amounts of data into information and knowledge. It thus contributes significantly to the systems analysis of complex biological, technical, biotechnological and crop cultivation systems and their integration.

Project start: 01.03.2018
Project end: 28.02.2021
Sponsor: Hessen State Ministry of Higher Education, Research and the Arts

The aim of this project is to assess the effects of abiotic stressors (in particular increased atmospheric CO2 concentration) on the interactions between grapevines and the two grape berry moth species (Lobesia botrana and Eupoecilia ambiguella). For this purpose, experiments will be carried under controlled conditions in greenhouse chambers as well as in the Geisenheim VineyardFACE facility. Parameters of development of both moth species under different CO2 concentrations are recorded, as well as changes in the expression pattern of relevant genes during the larval development on grapevines in the field under elevated and ambient CO2 concentration. For this purpose, investigations of the larval transcriptome will be carried out by RNAseq.

Hochschule Geisenheim
© Dr. Moustafa Selim

Project start: 01.01.2018
Project end: 31.12.2020
Sponsor: Bundesprogramm Ökologischer Landbau und andere Formen nachhaltiger Landwirtschaft

Project start: 01.08.2019
Project end: 30.12.2020

In a collaborative project, the universities of Koblenz, Bingen and Geisenheim are developing a framework concept for local climate adaptation in the Upper Middle Rhine Valley World Heritage. The project identifies climate change in the world heritage area, and describes the current state of knowledge and the developments to be expected from global trends and existing spatial conditions. Furthermore, the project outlines possible prevention measures as well as possibilities to avoid and mitigate negative impacts of climate changes on a local level.

Hochschule Geisenheim
© Prof. Dr. Eckhard Jedicke

Project start: 01.08.2017
Project end: 30.06.2020
Sponsor: Hessian Agency for Nature Conservation, Environment and Geology

Climate change effects may foster the development of new pests of high societal importance in the state of Hessia (Klimaschutzkonzept Hessen 2012). However, in some cases the developmental rate may also be greatly reduced. Own research suggests that the developmental rate of two insect species of high medical and economical relevance, the asian bush mosquito (Aedes japonicus japonicus) and the spotted wing drosophila (Drosophila suzukii), may be largely reduced or even stopped under conditions of high summer temperature. This may result in a largely reduced damage or risk of infection. However, the effects of a changing climate and temperature regime on population dynamics of the asian bush mosquito and the spotted wing drosophila are largely unknown. In this project we will identify frequency, length and regions in the state of Hessia with a higher or lower risk of a high population build up of these two insect species using phenological modelling in combination with climate change scenario ensembles.The parallel project PEST will deliver data on the effects of daily temperature variations and extreme weather situations on the development of the two insect species to allow an improved phenological modelling approach. The synergy between the two projects will allow a realistic estimate as a basis for the respective governmental agencies in Hessia.

Project start: 01.06.2018
Project end: 31.05.2020
Sponsor: Federal Ministry of Education and Research

Project start: 01.05.2017
Project end: 30.04.2020
Sponsor: Forschungsring des Deutschen Weinbaus

Project start: 01.01.2018
Project end: 31.12.2019
Sponsor: German Academic Exchange Service

Project start: 01.01.2018
Project end: 31.12.2019
Sponsor: uratorium für Technik und Bauwesen in der Landwirtschaft e.V.

Determining on a scientific basis why specific food and wine combinations are prefered by consumers and others not by using the food pairing and food completing theory.

Project start: 01.11.2016
Project end: 31.10.2019
Sponsor: Federal Ministry of Food and Agriculture

The aim of the planned project is to accomplish an early and reliable selection of growth types of the columnar apple, that are best suited for commercial growing systems, on very young plants from crossings. To achieve this, a combination of a few molecular markers will be identified. In combination with other already known markers such as the one for the typical apple aroma (Rowan et al., 2009; Souleyre et al., 2014) an early selection system for the combination of valuable traits including the growth habit of the future trees will be established. To further develop the early selection system, a fast breeding approach will be adopted to allow for a very efficient development of new varieties for the growers. This will allow for a fast introduction of an effective and economically sound production system for a regional production of cider apples for the fruit juice industry. The very effective production system will allow for a production where both, grower and juice industry, work on an economically feasible basis providing income opportunities for both sides.

Project start: 01.09.2017
Project end: 30.06.2019

Hochschule Geisenheim
© Prof. Dr. Eckhard Jedicke

Project start: 10.07.2017
Project end: 31.03.2019
Sponsor: Development agency for agribusiness

Phytoplasmas (Candidatus Phytoplasma) are cell wall-less plant-pathogenic bacteria which can colonize the phloem of more than 700 plant species including many economically important crops. They cause a wide range of symptoms that vary depending on the phytoplasma strain, their host plant, and environmental factors, and usually include yellowing of leaves, proliferation of shoots and stunting. In grapevine (Vitis vinifera) phytoplasmas cause diseases referred to as grapevine yellows. In other fruit trees like apple (Malus domestica) they cause apple proliferation and in pear (Pyrus) they lead to pear decline. Phytoplasmas are spread by phloem-feeding insect vectors, grafting, or vegetative propagation of infected plants. Control strategies for phytoplasmas currently rely only on preventing their spread, as there are no effective chemical plant protection products against phytoplasmas. In addition, phytoplasma diseases have long incubation periods of up to several months before symptoms can be observed. Therefore, this project aims to develop a fast and reliable molecular detection method for phytoplasmas based on LAMP and TaqMan assays, respectively, to be used in the production of vegetatively propagated crops like grapevine, apple, or pear.

Hochschule Geisenheim
© Hochschule Geisenheim

Project start: 01.04.2017
Project end: 31.03.2019
Sponsor: Federal Ministry of Education and Research

BioCAP-CCS quantifies the global potentials and effects of large-scale land use with biomass plantations used to limit global warming to 1.5° by negative emissions for mitigation and compensation of temporary overshooting emissions. The project quantifies for the first time the global potential of biochar-CCS while considering concurrences for land, water, food security and protection of ecosystem integrity.

Project start: 01.04.2016
Project end: 31.03.2019
Sponsor: European Commission, Hessian Ministry of the Environment, Climate Protection, Agriculture and Consumer Protection

Yellow Wilting has been a problem in cultivation of corn salad for many years. Many abiotic and biotic factors have been excluded as causes. Yet, respective organisms and control measures are not identified. The project within the framework of EIP Agri aims at identifying the cause of Yellow Wilting with the help of metagenomic and metabolomic analyses and developing effective control strategies. Initial results show that solarization as soil disinfestation is efficient in inhibiting Yellow Wilting.

Project start: 01.01.2018
Project end: 31.12.2018
Sponsor: Ministerium für Wirtschaft, Verkehr, Landwirtschaft und Weinbau Rheinland-Pfalz

The German wine sector is subject to ongoing structural change. As a result of the changes in the competitive environment, companies are becoming more professional and are increasingly concentrating exclusively on wine-growing and marketing, with the size of farms increasing for economic reasons. This structural change requires the wineries to continue to develop and adapt in order to be economically successful.

Project start: 15.03.2017
Project end: 31.12.2018
Sponsor: Deutscher We

The aim of this project is to carry out a cross-regional study in order to obtain up-to-date data on tourism in Germany by using qualitative and quantitative methods, in which both tourists and producers in all 13 German growing regions are interviewed.

Project start: 01.01.2015
Project end: 31.10.2018
Sponsor: Federal Ministry of Education and Research, European Commission

Project start: 01.03.2015
Project end: 28.02.2018
Sponsor: Hessen State Ministry of Higher Education, Research and the Arts

The spotted wing drosophila, Drosophila suzukii Matsumura is an invasive and highly polyphagous insect, being able to infest a variety of important crops, including cherries, raspberries, strawberries and grapes. In contrast to native European Drosophila species female flies lay their eggs in undamaged fruits, where larvae develop on fruit flesh, causing fruits to rot within a few days, thus making them unmarketable. Accordingly, yield losses of up to 100% and thus severe economic losses have been recorded. Accordingly, the development of new management strategies is required which allow a sustainable control of this insect during the cultivation of grapevine and soft fruit. The major aim of this project is therefore the development of an efficient and selective trap and/or attractant. This attractant, in conjunction with e.g. biological insecticides, can be utilized in bait traps or oviposition medium which previously has been treated with an insecticide to combat the spotted wing drosophila before the ripening of soft fruits or grapes.

Hochschule Geisenheim
© Hochschule Geisenheim

Project start: 01.01.2016
Project end: 31.12.2017
Sponsor: Hessen State Ministry of Higher Education, Research and the Arts

The influence of CO2 concentration and nitrogen form on two varieties of rucola (Diplotaxis tenuifolia) is investigated in climatic chambers. Plant physiological parameters, yield and valuable compounds are analyzed.

Project start: 01.06.2015
Project end: 31.12.2017
Sponsor: Hessian Ministry of the Environment, Climate Protection, Agriculture and Consumer Protection

Project start: 01.01.2014
Project end: 31.12.2017
Sponsor: Hessen State Ministry of Higher Education, Research and the Arts

Within the FACE2FACE experiment the effects of climate change on agricultural ecosystems such as grassland and specialized crops are investigated. For the cultivation of specialized crops, particular emphasis is placed on plant physiology as well as ingredient composition of harvested material. In the subproject “AP 3.1 Ingredients & product quality – vegetables” the effects of elevated CO2 in interaction with reduced water supply on ingredient composition of spinach, radish and cucumber are investigated.

Project start: 01.01.2014
Project end: 31.12.2016
Sponsor: Hessen State Ministry of Higher Education, Research and the Arts

Project start: 01.03.2013
Project end: 31.12.2016
Sponsor: Federal Ministry of Food and Agriculture

Project start: 01.01.2013
Project end: 31.12.2016
Sponsor: European Commission

InnoVine is a European collaborative project funded through the Knowledge Based Bio-Economy (KBBE) program, launched in January 2013.  During 4 years, it will involve 27 different partners from 7 European countries (Bulgaria, France, Germany, Hungary, Italy, Portugal and Spain).

Project start: 01.01.2012
Project end: 31.12.2016
Sponsor: Federal Ministry of Food and Agriculture

Improved methods of irrigation and irrigation scheduling in open-field vegetable production may help to ensure the efficient use of water, energy and labour, high product qualities and quantities. Twelve vegetable farms in two German growing regions with high irrigation demand were intensively advised to improve the efficiency of irrigation and its demand for energy. Regional workshops for interested farmers multiple and publish the experiences of the farmers involved in the pilot project.

Project start: 01.03.2012
Project end: 31.12.2015
Sponsor: German Federal Environmental Foundation

Fungal entomopathogens are important antagonists of arthropod pests and have attracted increased attention as biocontrol agents in pest management programs. Some entomopathogenic fungi can endophytically colonize an array of plant species, providing systemic protection against damage by various insect pests or triggering induced systemic resistance mechanisms against plant pathogens. In the present study, greenhouse experiments were conducted to verify endophytic establishment of Beauveria bassiana in grapevine plants Vitis vinifera. Therefore, two commercialized B. bassiana strains (ATCC 74040 and GHA) were applied on potted grapevine plants. The antagonistic activity of endophytic B. bassiana against putative target pest insects like the vine mealybug Planococcus ficus was assessed using surface sterilized leaves for a bioassay. Possible effects of endophytic B. bassiana on the feeding preference of black vine weevil Otiorhynchus sulcatus choosing between control and inoculated plants were examined through choice assays. Furthermore, the protective potential against grapevine downy mildew Plasmopara viticola was investigated in greenhouse experiments. Endophytic survival of B. bassiana inside leaf tissues was evident at least 28 days after inoculation. A significant effect of endophytic B. bassiana on growth and on mortality of P. ficus one week after the initial settlement of the vine mealybugs was evident. Adult O. sulcatus chose significantly more often control plants as a host plant compared to grapevine plants with endophytic B. bassiana. A significant effect on the disease severity of downy mildew on potted grapevine leaves could be observed if plants were treated with B. bassiana 3 and 7 days before an inoculation with P. viticola. Endophytic establishment of B. bassiana in grapevine plants therefore represents an alternative and sustainable plant protection strategy, with the potential of reducing pesticide applications in viticulture.

Hochschule Geisenheim
© Hochschule Geisenheim

Project start: 01.01.2012
Project end: 31.12.2015
Sponsor: Federal Ministry of Food and Agriculture

Project start: 01.01.2011
Project end: 31.12.2015
Sponsor: Landesbetrieb Landwirtschaft Hessen

"Yellow Wilting" is a severe problem in the production of corn salad (Valerianella locusta). The symptoms are yellow, chlorotic and limp leaves. Affected plants are not marketable any more. Previous experiments have pointed to the fact that plant pathogens might be involved. The microbiocoenosis in soils with symptomatic and asymptomatic plants shall be investigated, using experiments in green house and climate chambers.

Project start: 07.08.2012
Project end: 06.08.2015
Sponsor: German Research Foundation

Salinity stress causes architectural alterations and physiological disturbances on plants, with tremendous implications for light interception and crop productivity. The purpose of this project was to develop an integrated understanding of salinity-induced architectural alterations and physiological disturbances significant for the cucumber productivity and to study the interactions between salinity and light.

Project start: 01.01.2011
Project end: 31.01.2015
Sponsor: Hessian Centre on Climate Change

The future climate impact on climatic water balance and dynamics of plant nutrients are evaluated for the vegetable production in the region "Hessisches Ried" in Hesse, Germany. Regional climate models WETTREG, REMO and CCLM, driven by global climate models ECHAM5 and HadCM3 under scenario A1B, are assessed to evaluate potential ranges of changes in climatic water balance. The impact of climate change on nitrate leaching is investigated via experiments in lysimeters.

Project start: 01.12.2008
Project end: 31.01.2015
Sponsor: German Research Foundation


According to Directive 1107/2009 of the EU our department is officially recognized as a facility for efficacy testing of plant protection products. We are thus holding a GEP (good experimental practice) Recognition Certificate, authorized from the German Plant Protection Service. Over the years, we have gained huge experience in conducting field trials in particular in viticulture, testing various aspects of integrated and biological control of grapevine pests and diseases. In field and greenhouse trials, we are testing plant protection products and/or agents for their efficacy, selectivity and (un)desired side effects, focusing on the best application date and interval, screening for the optimal concentration of active ingredients, taking fungicide resistance aspects into consideration and optimizing newly developed biological control agents (e.g. application coat, uptake by fungal cells, rain stability).