Claudia Kammann

Prof. Dr. Claudia Kammann

Phone: +49 6722 502 755
eMail: Claudia.Kammann(at)
Postal Address:Von-Lade-Straße 1
D-65366 Geisenheim
Address: Building 6101
Room 00.04
Von-Lade-Straße 1
65366 Geisenheim
Research Projects

Project start: 01.07.2020
Project end: 30.06.2025
Sponsor: Hessian Ministry of the Environment, Climate Protection, Agriculture and Consumer Protection

The aim of the VitiVoltaic4Future project is to conduct research for viticulture in a newly created real laboratory for the use of agrophotovoltaics (APV). The infrastructure is to serve as an innovation platform beyond the project period; it is to enable research, development and knowledge transfer, as well as to encourage social participation in shaping the energy transition using practical examples. An overarching goal is to make land use more sustainable for special crops (here using viticulture as an example), to open up new ways of adapting the cultivation of special crops to climate change, and at the same time to develop renewable, decentralized power generation plus agricultural production in the field to application maturity iteratively with the stakeholders concerned as part of the energy transition. The concrete goal of VitiVoltaic4Future is to quantify the effects and possibilities of viticulture under Germany's first agro-PV system, to provide data for knowledge transfer, and to scientifically accompany adaptation strategy possibilities that could arise from such solar islands through viticultural research and know-how building. Within the project, measures for biodiversity promotion in viticulture (--> project "AMBITO) will be integrated. In particular, we aim to link "solar islands" with biodiversity islands in viticultural cultural landscapes, in order to holistically promote the sustainability of viticulture.

Project start: 01.04.2020
Project end: 31.03.2023
Sponsor: Hessian Ministry of the Environment, Climate Protection, Agriculture and Consumer Protection

The aim of the joint project "AKHWA" is to contribute to measure L 19 of the Integrated Climate Protection Plan Hesse 2025. The joint project is concerned with research into the implementation of cultivation measures from the "toolbox" of regenerative agriculture (ReLaWi) on soil fertility and ecosystem services, especially with regard to soil water retention, which is becoming increasingly important against the backdrop of advancing climate change and the recent heatwave summers.

Project start: 05.04.2019
Project end: 30.11.2021
Sponsor: Central Innovation Programme for SMEs

The ZIM cooperation project with Prodana GmbH involves the development of a new batch reactor by the start-up company for the carbonization of a farmer's own woody residues or wood chips. The task of the partner HGU is the development and evaluation of plant carbon-based organic fertilizers under examination of their environmental effects and environmental and yield effectiveness. At HGU, tests are therefore carried out with biochar from the novel retort, in which either a more extensive screening of various carbon fertilizer combinations for their nitrate retention capacity and possible N2O emission reduction is carried out in the greenhouse. In addition, selected carbon fertilizer combinations for a possible yield increases and improvement of the environmental balance are tested in the field under natural weather conditions using pseudo-lysimeters. The results of the project partner HGU will be used to improve the batch process of biochar production accordingly and to develop a field data basis that can be made available to potential interested parties and users.

Project start: 01.01.2018
Project end: 31.12.2019
Sponsor: German Academic Exchange Service

Project start: 01.04.2017
Project end: 31.03.2019
Sponsor: Federal Ministry of Education and Research

BioCAP-CCS quantifies the global potentials and effects of large-scale land use with biomass plantations used to limit global warming to 1.5° by negative emissions for mitigation and compensation of temporary overshooting emissions. The project quantifies for the first time the global potential of biochar-CCS while considering concurrences for land, water, food security and protection of ecosystem integrity.