Jörn Schultheiß

Dr. Jörn Schultheiß

Organizational Unit(s):Department of Landscape Planning & Nature ConservationProfessorship for Landscape Development
Assignment: Competence Center Cultural Landscape (KULT)
Phone: +49 6722 502 653
eMail: Joern.Schultheiss(at)hs-gm.de
Postal Address:Von-Lade-Straße 1
D-65366 Geisenheim
Address: Building 7100
Room 01.06
Rüdesheimerstraße 18
65366 Geisenheim
Research Projects

Project start: 01.10.2023
Project end: 30.09.2025
Sponsor: Federal Agency for Nature Conservation

Historic cultural landscape elements (HLE) characterize the diversity, uniqueness and beauty of nature and landscape, biodiversity, cultural-historical value and the sustainability of landscape areas. Using a "bottom-up" approach, the project aims to show whether and how cultural landscapes can be differentiated from one another on the basis of the element level. The following objectives are pursued: (1) Development of a nationwide applicable selection method of value-giving, space-constituting element types; (2) Further methodological development of the recording and evaluation of significant historical cultural landscapes using an element-based approach; (3) Analysis of the need for protection, possible instruments for legal protection and opportunities for historic cultural landscape elements in sustainable landscapes; (4) Further development of planning methods for analysis and evaluation; (5) Public relations work. These objectives will be worked on using examples of landscape sections in the three federal states of Brandenburg, Hesse and Thuringia.

Hochschule Geisenheim
© Prof. Dr. Eckhard Jedicke

Project start: 01.07.2023
Project end: 30.06.2026
Sponsor: Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit

The preservation and planting of urban green, especially trees, play a crucial role in the adaptation of cities to global heating, as they provide natural cooling. Larger trees transpire up to 500 litres of water per day. Shade and evaporative cooling reduce the effect of urban heat islands. However, road salt, soil compaction and pollutants stress urban trees. Heat and drought intensify, so that new plantings often fail to grow and existing trees increasingly die before they reach a size that has an impact on the city's climate. Alternative tree substrates could provide a remedy, and also improve the infiltration of water from heavy rainfall events. One promising approach are biochar macadam substrates (PMS), i.e. defined mixtures of rock gravel, plant charcoal and compost. After compaction, the crushed stone results in a passable but pore-rich structure that creates space and aaeration for root growth and which are capable of absorbing high levels of precipitation. The production of the biochar also locks up biomass carbon over decades to millennia (=carbon sinks, i.e. carbon (dioxide) removal). PMS were developed in Stockholm and are so far only used in Sweden, Austria and Switzerland. The goal of "Black2GoGreen" is to create a network of municipalities, municipal enterprises, associations as well as manufacturers of biochar and biochar (tree, green-roof) substrates to transfer knowledge about already implemented solutions to Germany.