Martin Reiss

Dr. Martin Reiss

Phone: +49 6722 502 654
eMail: Martin.Reiss(at)
Postal Address:Von-Lade-Straße 1
D-65366 Geisenheim
Address: Building 7100
Room 01.03
Rüdesheimerstraße 18
65366 Geisenheim
Research Projects

Project start: 01.07.2023
Project end: 30.06.2026
Sponsor: Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit

The preservation and planting of urban green, especially trees, play a crucial role in the adaptation of cities to global heating, as they provide natural cooling. Larger trees transpire up to 500 litres of water per day. Shade and evaporative cooling reduce the effect of urban heat islands. However, road salt, soil compaction and pollutants stress urban trees. Heat and drought intensify, so that new plantings often fail to grow and existing trees increasingly die before they reach a size that has an impact on the city's climate. Alternative tree substrates could provide a remedy, and also improve the infiltration of water from heavy rainfall events. One promising approach are biochar macadam substrates (PMS), i.e. defined mixtures of rock gravel, plant charcoal and compost. After compaction, the crushed stone results in a passable but pore-rich structure that creates space and aaeration for root growth and which are capable of absorbing high levels of precipitation. The production of the biochar also locks up biomass carbon over decades to millennia (=carbon sinks, i.e. carbon (dioxide) removal). PMS were developed in Stockholm and are so far only used in Sweden, Austria and Switzerland. The goal of "Black2GoGreen" is to create a network of municipalities, municipal enterprises, associations as well as manufacturers of biochar and biochar (tree, green-roof) substrates to transfer knowledge about already implemented solutions to Germany.

Project start: 03.08.2022
Project end: 01.08.2025
Sponsor: German Research Foundation

The aim of this research project is to investigate the temporal changes in macroinvertebrate communities in the Arctic glacier-fed river Vestari-Jökulsá since 1996 and to identify relevant environmental factors. The effects of climate change on the longitudinal distribution of macroinvertebrates in glacier-fed streams have become more prominent in recent years. Water temperature and channel stability in glacier-fed streams are expected to increase with climate-induced glacier melt. A decrease in ?-diversity in the initial phase of higher runoff due to the loss of larger glacier masses will eventually be followed by an increase in taxa diversity (?-diversity) and abundance, along with an upward migration of downstream macroinvertebrates. In Iceland, the aquatic macroinvertebrate fauna is very species-poor, and Icelandic glacial rivers have the lowest density and diversity of benthic invertebrates of all Arctic river types, which may make it difficult for aquatic fauna to adapt to rapidly changing environmental conditions and difficult for macroinvertebrates to migrate upstream. The response of benthic macroinvertebrates in Arctic glacier-fed streams to future environmental changes could be significantly different from that in lower latitude climatic regions. Therefore, there is a need for comparative experimental studies that assess long-term changes in longitudinal patterns in glacier-fed streams in Arctic regions.

Project start: 01.07.2020
Project end: 31.10.2025
Sponsor: Federal Office for Agriculture and Food

The model and demonstration project (MuD) focuses on priority crop wild relatives (CWR species), which are generally not target species of official nature conservation. Nevertheless, permanent conservation is also required for these species, as part of biological diversity according to § 1 of the Federal Nature Conservation Act (BNatSchG). For the expansion of a German network of genetic conservation areas, CWR umbrella species and candidate genetic reserves are to be identified nationwide from WEL species hotspots, and genetic reserves for in situ conservation are to be implemented in certain regions on a model basis. In this concept, genetic reserves no longer focuses on individual species, but rather on hotspots of CWR species of different habitat types. Thus, compared to previous projects (wild celery, wild apple, wild grapevine, grassland), which were always based on a narrow species spectrum, a specific species or similar habitat types, the MuD has a considerably broader and fundamentally new approach. Furthermore, recommendations for structural financing are to be developed - the focus of Geisenheim University's work in the project - for example by integrating conservation and management measures into the rural development plans (RDPs) of the federal states, with funding from the Joint Task "Improvement of Agricultural Structures and Coastal Protection" (GAK) and/or the Common European Agricultural Policy (CAP). These are essential, still missing components of an in situ conservation strategy for CWR species. The overall result is a GenEG selection procedure for priority CWR species that is economically efficient and can be integrated into existing nature conservation and agricultural funding activities.

Hochschule Geisenheim
© Prof. Dr. Eckhard Jedicke

Project start: 01.08.2019
Project end: 30.12.2020

In a collaborative project, the universities of Koblenz, Bingen and Geisenheim are developing a framework concept for local climate adaptation in the Upper Middle Rhine Valley World Heritage. The project identifies climate change in the world heritage area, and describes the current state of knowledge and the developments to be expected from global trends and existing spatial conditions. Furthermore, the project outlines possible prevention measures as well as possibilities to avoid and mitigate negative impacts of climate changes on a local level.

Hochschule Geisenheim
© Prof. Dr. Eckhard Jedicke

Project start: 01.05.2019
Project end: 31.10.2022
Sponsor: Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit

The project’s aim is to set up a local and inter-municipal cooperation and to turn it into concerted efforts to adapt to climate change in viticulture using the example of the Rheingau. Within the network, effective and sustainable concepts for climate adaptation in viticulture are being developed and tailored to specific user groups. With regard to the model character of the project, the resulting approaches can be adapted to other agricultural systems such as areas used for fruit and vegetable growing.

Hochschule Geisenheim
© Wuppertal Institut, Projekt KliA-Net