Erika Krüger-Steden

Dr. Erika Krüger-Steden

Postanschrift:Von-Lade-Straße 1
D-65366 Geisenheim
Vita

Erika Krüger studierte Gartenbau an der Leibniz Universität Hannover. Nach der Promotion 1983 am dortigen Institut für Obstbau und Baumschule absolvierte sie von 1983-1985 eine Ausbildung zum Höheren Landwirtschaftlichen Dienst bei Regierungspräsidium Köln. Von 1986 bis 1988 war sie Versuchsleiterin und Fachlehrerin für Obstbau und Baumschule an der Versuchsanstalt Auweiler-Friesdorf der Landwirtschaftskammer Rheinland. Seit Juni 1988 ist sie als Wissenschaftlerin und Dozentin für Obstbau mit der stellvertretende Leitung des Instituts für Obstbau der Hochschule Geisenheim betraut. Erika Krüger ist Mitglied in der Deutschen Gartenbauwissenschaftlichen Gesellschaft sowie des of ISHS, Sektion ‘Vine and Berry Fruits‘ und dort in den Arbeitsgruppen ‘Rubus and Ribes Species‘ sowie ‘Strawberry Culture and Management‘. Als externe Gutachterin ist sie für diverse wissenschaftliche Zeitschriften tätig. Seit März 2016 leitet sie das Arbeitspaket 1 des EU-Projektes GoodBerry (Horizon 2020, Grant Agreement Nummer 679303).


Publikationen
Forschungsprojekte

Projektanfang: 10.07.2017
Projektende: 31.03.2019
Förderer: Landwirtschaftliche Rentenbank

Phytoplasmen (Candidatus Phytoplasma) sind zellwandlose pflanzenpathogene Bakterien, die das Phloem von mehr als 700 Pflanzenarten, darunter viele wirtschaftlich wichtige Kulturpflanzen, besiedeln können. Sie verursachen eine Vielzahl von Symptomen, die in Abhängigkeit vom Phytoplasma-Stamm, der Wirtspflanze und den Umweltfaktoren variieren und häufig eine Verfärbung der Blätter, eine vermehrte Anzahl von Trieben („Hexenbesen“) und einen gestauchten Wuchs umfassen. In Weinreben (Vitis vinifera) verursachen Phytoplasmen bspw. Die sogenannten Vergilbungskrankheiten, bei Apfel (Malus domestica) die Apfeltriebsucht und in Birnen (Pyrus spp.) den sogenannten Birnenverfall. Phytoplasmen werden durch phloemsaugende Insektenvektoren, über Veredelung oder durch die vegetative Vermehrung infizierter Pflanzen verbreitet. Bekämpfungsstrategien für Phytoplasmen beruhen derzeit nur auf der Verhinderung ihrer Ausbreitung, da keine wirksamen Pflanzenschutzmittel gegen Phytoplasmen zur Verfügung stehen. Darüber hinaus haben Phytoplasma-Erkrankungen lange Inkubationszeiten von bis zu mehreren Monaten, bevor Symptome beobachtet werden können. In diesem Projekt soll daher eine schnelle und zuverlässige molekulare Nachweismethode für Phytoplasmen entwickelt werden, die auf LAMP- bzw. TaqMan-Assays basiert und bei der Produktion und Kultur von vegetativ vermehrten Pflanzen wie Weinreben, Äpfeln oder Birnen verwendet werden kann.

Hochschule Geisenheim
© Hochschule Geisenheim

Projektanfang: 01.03.2016
Projektende: 29.02.2020
Förderer: Europäische Kommission

Das von der Universität Málaga koordinierte EU-Projekt GoodBerry (Grant Agreement No 679303) beschäftigt sich mit Erdbeeren, Himbeeren und Schwarzen Johannisbeeren als Modellpflanzen und soll u.a. neue Erkenntnisse hinsichtlich der Anpassung von Sorten an unterschiedliche klimatische Bedingungen sowie deren Einfluss auf die Fruchtqualität der Beeren liefern. So hat die Klimaerwärmung einen Einfluss auf die Blütenanlage und die Kontrolle der Dormanz (Winterruhe) der Pflanzen. Erste Beeinträchtigungen sind im letzten Jahrzehnt auch unter deutschen Anbaubedingungen bei Erdbeeren oder Johannisbeeren zu beobachten gewesen. So führt mangelnde Winterkälte bei Erdbeeren zu kurzen Blüten/Frucht- und Blattstielen und verringerter Blattfläche. Warmes Herbstwetter einhergehend mit spätem Eintritt in die Winterruhe führt bei Erdbeeren außerdem zu einem übermäßigen Blütenansatz, was kleine Früchte von minderwertiger Qualität zur Folge hat. Durch den Anbau gleicher Sorten bzw. Kreuzungsnachkommen an verschiedenen Standorten vom Nord- nach Süd-Europa soll der Einfluss unterschiedlicher Klimazonen auf die Pflanzen untersucht werden, um so den Klimawandel zu simulieren. Neben der Phänotypisierung (Blüteninitiation, Wachstumsparameter) sollen mittels molekulargenetischer Analysen im Hochdurchsatzverfahren Blütenbildung, Kontrolle der Dormanz und Ausprägung der Fruchtqualität untersucht werden.

Projektanfang: 01.03.2013
Projektende: 31.12.2016
Förderer: Bundesministerium für Ernährung und Landwirtschaft

Die Rubus stunt gilt als die wichtigste Phytoplasmose an Himbeeren und kann Ertragsausfälle von bis zu 100% hervorrufen. Mit den bisher zur Verfügung stehenden Diagnoseverfahren werden latent infizierte aber auch symptomatische Pflanzen nicht einwandfrei erkannt. Zudem sind potentielle Vektoren und mögliche Übertragungswege unbekannt. Ziel des Projektes ist die Erarbeitung eines hoch-sensitiven und schnellen molekularen on-site Testsystems zur frühzeitigen Diagnostik dieser Phytoplasmose. Zudem sollen Erkenntnisse zum Artenspektrum potentieller Vektoren und weiteren Übertragungswegen gewonnen werden, die als Grundlage für die Entwicklung gezielter und termingerechter Bekämpfungsmaßnahmen dienen. Die Entwicklung einer molekularen Methode zur Diagnose der Rubus stunt soll nach Etablierung eines on-site Probenahmeprotokolls auf Basis von TaqMan Sonden, LAMP-Assays und markierungsfreier Detektion erfolgen. Untersuchungen zu Artenspektrum und Phänologie potenzieller Vektoren, weiteren Übertragungswegen, der Anfälligkeit von Himbeersorten sowie zu gezielten Bekämpfungsmaßnahmen sollen in einem Himbeervermehrungsbetrieb bzw. in Ertragsanlagen erfolgen. Darauf aufbauend sollen Managementstrategien im Zuge der Vermehrung bzw. Kultivierung von Himbeeren entwickelt werden. Schließlich sollen die erarbeiteten Methoden zur molekularen Phytoplasmendiagnostik unter Feldbedingungen validiert und für einen Nachweis von Phytoplasmen auf andere Kulturpflanzen übertragen werden.

Projektanfang: 01.05.2011
Projektende: 31.10.2014
Förderer: Europäische Kommission

Himbeeren werden heute, neben dem traditionellen Anbau im Freiland, zunehmend im geschützten Anbau, d.h. unter Regenkappen aus Plastik, im Tunnel oder Gewächshaus kultiviert. Ziel ist es, die empfindlichen Früchte vor Witterungseinflüssen zu schützen bzw. den Angebotszeitraum für Himbeerfrüchte aus zu dehnen. Für die Eindeckung von Regenkappen und Tunneln stehen mittlerweile verschiedene Materialien zur Verfügung. Himbeeren sind reich an Vitamin C und enthalten zudem eine Vielzahl an sekundären Pflanzeninhaltsstoffen. Den Pflanzen dienen hierbei die Polyphenole als Farb-, Duft- oder Lockstoffe (Anthocyane, Flavonoide), sowie als Abwehrstoffe (Ellagtannine) gegen Pathogene. Diese Polyphenole werden aber auch bei abiotischen Stress gebildet und schützen durch ihre antioxidative Wirkung die Pflanzen vor freien Radikalen und deren oxidative Schäden. Neben der Schutzfunktion für die Pflanzen besitzen Polyphenole aber auch eine gesundheitsfördernde Wirkung für Menschen. So soll u.a. das Risiko von Krebs, Arteriosklerose, Herz-Kreislaufbeschwerden und neurodegenerativen Erkrankungen bei Obst und Gemüse reicher Ernährung und damit polyphenolreicher Nahrung reduziert sein. Bisher liegen nur wenige Erfahrungen vor, welchen Einfluss die erhöhten Temperaturen sowie die verringerte Luftbewegung im geschützten Anbau und verschiedene Tunnelfolien (mit und ohne UVB-Durchlässigkeit bzw. schattierend) auf die Photosyntheseleistung der Himbeerpflanzen und damit auf ihren Kohlenhydrathaushalt haben. Die veränderten Stoffwechselaktivitäten könnten auch die Synthese der sekundären Pflanzeninhaltsstoffe beeinflussen Daher soll in einem Vergleich von Freiland- und Tunnelanbau der Einfluss veränderter Umweltbedingungen wie Lichtintensität und –qualität, Temperatur und rel. Luftfeuchte auf Photosynthese und Kohlenhydrathaushalt von Himbeerpflanzen sowie die Bildung von sekundären Inhaltsstoffen in Blättern und Früchten erarbeitet werden.

Vorträge